А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный
10 см
Объяснение:
Задание
Найти гипотенузу прямоугольного треугольника, если его площадь равна 30 см², а высота, проведённая к гипотенузе, равна 6 см.
Решение
Площадь треугольника равна половине произведения любой его стороны на высоту, проведённую к этой стороне (либо к её продолжению).
Гипотенуза - это одна из сторон треугольника, поэтому площадь можно выразить следующим образом:
S = c · h : 2,
где с - гипотенуза,
h - высота, проведённая к гипотенузе.
Подставим в эту формулу исходные данные и найдём с:
30 = с · 6 : 2
с = 30 · 2 : 6 = 60 : 6 = 10 см.
ответ: гипотенуза равна 10 см.