Объяснение:
1.
АВ = 32 см
Пусть КВ - х, а АВ - х - 10
По условию AB = 32 см
х + x - 10 = 32
2x - 10 = 32
2x = 32 - 10
2x = 22
x = 22/2
x = 11
ответ: 11 см
2.
МК = 48 см
Пусть NK = x, тогда MN = 0.6x
По условию MK = 48 см
x + 0.6x = 48
1.6x = 48
x = 48/1.6
x = 30
MN = 3/5 NK = 30 / 5 • 3 = 18 см
ответ: 18 см
3.
МВ = 24 см
АМ:МВ = 1:3
АМ = 24/3 = 8 см
АВ = 24 + 8 = 32 см
В - середина АС
АС = 32 • 2 = 64 см
ответ: 64 см
4.
МК = 26 см
М - середина АС
К - середина ВС
МВ + ВК = 26 см
АМ = МВ
ВК = КС т.е.
АМ + КС = 26 см
АС = 26 + 26 = 52 см
ответ: 52 см
5.
КМ = 10 см
АМ = 32 см
КВ = 28 см
АК = АМ - КМ = 32 - 10 = 22 см
АВ = АК + КВ = 22 + 28 = 50 см
ответ: 50 см
Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME
Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие
Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй