Если внешний угол треугольника равен 144 градосув, то внутренний - сумежный с ним будет равен градусов. 180-144=36.
Сумма всех углов треугольника равна 180 градусов. 1 угол мы нашли, значит на остальные 2 угла у нас идёт 180-36=144 градусов. (сумма остальных 2-ух углов.)
Если они относятся как 5:7, то делаем уравнение.
Пусть "х" - одна составная часть, тогда 5х - это второй угол, а 7х - это третий угол.
5х+7х=144
12х=144
х=12 градусов
1) 12*5=60 градусов - второй угол
2) 12*7=84 градусов - третий угол.
ответ: Наименьший угол равен 36, а наибольший 84
Смотри рисунок на прикреплённом фото.
1) ΔАСD ~ ΔABС по 1-му признаку подобия прямоугольных треугольников: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие треугольники подобны. А у ΔАСD и ΔABС общий острый угол А.
2) Катет АС прямоугольного ΔАВС лежит против угла ∠В = 30°, значит АС равен половине гипотенузы АВ: АС = 0,5АВ = 0,5·12 = 6 (см).
Найдём коэффициент подобия ΔАСD и ΔABС по отношению их гипотенуз АС : АВ = 6/12 = 1/2. Следовательно, коэффициент подобия этих треугольников k = 1/2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
S(ΔACD) : S(ΔABC) = k² = 1 : 4.
3) Найдём величину катета ВС, используя теорему Пифагора:
ВС = √(АВ² - АС²) = √(12² - 6²) = √108 = 6√3 (см)
Известно, что биссектриса угла делит противолежащую сторону на отрезки, пропорциональные прилежащим к углу сторонам. Поэтому СЕ : ВЕ = АС : АВ = 1/2.
Тогда СЕ = 1/3 · ВС = 2√3 (см) и ВЕ = 2/3 · ВС = 4√3 (см)