Квадрат расстояния между двумя точками определяется соотношением d²=(x1−x2)²+(y1−y2)². Так как надо найти расстояние от точки до кривой, то координаты второй точки (лежащей на кривой) должны удовлетворять ее уравнению, поэтому d²=(x1−x2)²+(y1−f(x2))²=
Расстояние от точки до кривой - это минимальное расстояние между двумя точками, одна их которых лежит на кривой. Тогда для нахождения расстояния нам надо найти минимум функции определяющей расстояние, то есть, найти ее производную и приравнять нулю.
(d²)′ = 2(√(16 - x²) + 2x) / √(16 - x²).
Приравняем нулю числитель (можно выражение в скобках).
√(16 - x²) + 2x = 0 или √(16 - x²) = -2x.
Отсюда вывод: знак переменной х отрицателен.
Возведём обе части в квадрат.
16 - x² = 4x²,
5x² = 16, отсюда х = +- 4/√5, но у нас х = -4√5.
Находим у = +-√(16 - x²), но так как точка А имеет ординату с плюсом, то и ближайшая точка на кривой тоже с плюсом.
Хорошо! Для решения данной задачи, мы можем использовать несколько методов. Я предлагаю рассмотреть два способа решения - с использованием формулы для площади трапеции и с использованием формулы для площади треугольника.
1. Решение с использованием формулы для площади трапеции:
Для начала, нам необходимо найти высоту трапеции. Высота трапеции - это расстояние между основаниями, перпендикулярное им. Для этого можно воспользоваться теоремой Пифагора.
Мы знаем, что сторона AD равна 10 см, а сторона BC равна 8 см. Воспользуемся теоремой Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 8^2 = 10^2
AB^2 + 64 = 100
AB^2 = 100 - 64
AB^2 = 36
AB = √36
AB = 6 см
Теперь у нас есть высота трапеции AB, поэтому можем воспользоваться формулой для площади трапеции:
S = ((a + b) * h) / 2
где a и b - длины параллельных оснований, h - высота трапеции.
В нашем случае a = AD = 10 см, b = BC = 8 см, h = AB = 6 см:
S = ((10 + 8) * 6) / 2
S = (18 * 6) / 2
S = 108 / 2
S = 54 квадратных см
Ответ: площадь трапеции равна 54 квадратных см.
2. Решение с использованием формулы для площади треугольника:
Заметим, что треугольник ACD - это прямоугольный треугольник с гипотенузой AC. Мы знаем длины катетов AD и DC (они равны 10 см и 8 см соответственно), а также площадь треугольника ACD (она равна 30 квадратных см).
Теперь мы можем воспользоваться формулой для площади треугольника:
S = (a * b) / 2
где a и b - длины катетов прямоугольного треугольника.
В нашем случае a = AD = 10 см, b = DC = 8 см:
S = (10 * 8) / 2
S = 80 / 2
S = 40 квадратных см
Теперь нам нужно найти площадь трапеции. Трапеция состоит из двух треугольников ACD и BCD, поэтому мы можем сложить их площади:
S(trapezoid) = S(ACD) + S(BCD)
S(trapezoid) = 30 + 40
S(trapezoid) = 70 квадратных см
Ответ: площадь трапеции равна 70 квадратных см.
Я надеюсь, что мое объяснение было подробным и понятным для тебя. Если у тебя есть еще какие-либо вопросы, пожалуйста, не стесняйся задавать их!
Даны точка А(-1; 2) и кривая x² + y² = 16.
Квадрат расстояния между двумя точками определяется соотношением d²=(x1−x2)²+(y1−y2)². Так как надо найти расстояние от точки до кривой, то координаты второй точки (лежащей на кривой) должны удовлетворять ее уравнению, поэтому d²=(x1−x2)²+(y1−f(x2))²=
= (x + 1)² + (√(16 - x²) - 2)² = x² + 2x + 2 + 16 - x² - 4√(16 - x²) + 4 =
= 2x −4√(16 - x²) + 20.
Расстояние от точки до кривой - это минимальное расстояние между двумя точками, одна их которых лежит на кривой. Тогда для нахождения расстояния нам надо найти минимум функции определяющей расстояние, то есть, найти ее производную и приравнять нулю.
(d²)′ = 2(√(16 - x²) + 2x) / √(16 - x²).
Приравняем нулю числитель (можно выражение в скобках).
√(16 - x²) + 2x = 0 или √(16 - x²) = -2x.
Отсюда вывод: знак переменной х отрицателен.
Возведём обе части в квадрат.
16 - x² = 4x²,
5x² = 16, отсюда х = +- 4/√5, но у нас х = -4√5.
Находим у = +-√(16 - x²), но так как точка А имеет ординату с плюсом, то и ближайшая точка на кривой тоже с плюсом.
у = √(16 - (-4/√5)²) = √(16 - (16/5)) = √(64/8) = 8/√5.
Расстояние находим по вышеприведенной формуле.
d² = (-4/√5) - (-1))² + (8/√5 - 2)² = 21 - 8√5.
d = √(21 - 8√5) = √(16 - 8√5 + 5) = √(4 - √5)² = 4 - √5 ≈ 2,236.
Эту задачу можно было решить проще.
Заданная кривая x² + y² = 16 это окружность с центром в начале координат и радиусом 4.
Ближайшая точка лежит на одном радиусе ОА.
ОА = √(-1 - 0)² +(2 - 0)² = √5.
ответ: d = 4 - √5.