4. Периметр - это сумма длин всех сторон. В условии дан параллелограмм. Во всех рисунках смежные стороны отмечены, как равные, но такой параллелограмм уже превращается в ромб. т.е. достаточно найти одну сторону, чтобы ответить на вопрос, чему равен периметр.
4*15=60/м/
5. Так как это ромб, то его диагонали являются биссектрисами внутренних углов. Значит, ∠SКМ =∠SКL=60°, тогда и ∠КSl=∠SlК=60°, ΔSLК имеет равные стороны, т.е. 8м, а периметр 8*4=32/м/
6. QP⊥RM ∠RQP=30°, т.к. острые углы в прямоугольном треугольнике составляют 90°, а против угла в 30°лежит катет RP=6, который равен половине гипотенузы RQ, поэтому RQ=12, а периметр, следовательно, 12*4=48
1. площа прям. трик.= 1/2 катет*катет.(один катет=12 за умовою, другий - невідомий). 2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти. 3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті 8х=80 х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18. 4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти. 5. площа=1/2 *12*6корінь5=36*корінь з пяти.
4. Периметр - это сумма длин всех сторон. В условии дан параллелограмм. Во всех рисунках смежные стороны отмечены, как равные, но такой параллелограмм уже превращается в ромб. т.е. достаточно найти одну сторону, чтобы ответить на вопрос, чему равен периметр.
4*15=60/м/
5. Так как это ромб, то его диагонали являются биссектрисами внутренних углов. Значит, ∠SКМ =∠SКL=60°, тогда и ∠КSl=∠SlК=60°, ΔSLК имеет равные стороны, т.е. 8м, а периметр 8*4=32/м/
6. QP⊥RM ∠RQP=30°, т.к. острые углы в прямоугольном треугольнике составляют 90°, а против угла в 30°лежит катет RP=6, который равен половине гипотенузы RQ, поэтому RQ=12, а периметр, следовательно, 12*4=48