28 cm
Объяснение:
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90
3x=90
x=30
один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a
a+1\2a=42
3\2a=42
a=42×2;3=28
ответ 28 см
Через катет прямоугольного равнобедренного треугольника проведена плоскость, которая образует с плоскостью треугольника угол 60°. Найдите углы, которые образуют 2 другие стороны треугольника с этой плоскостью.
Обозначим треугольник АВС. АС=ВС, угол С=90°
Проведенная плоскость и плоскость треугольника образуют двугранный угол, линейным углом которого являются два перпендикуляра к его ребру в точке С.
Угол АСВ - прямой, ⇒АС- перпендикуляр в плоскости треугольника к линии пересечения плоскостей, НС - перпендикуляр, проведенный в проведенной плоскости к той же линии.
Угол АСН =60°
АН - перпендикуляр к плоскости, НВ - проекция гипотенузы АВ на плоскость.
Угол АВН - искомый.
В равнобедренном прямоугольном треугольнике острые углы равны 45°.
Примем катеты ∆ АВС равными а. Тогда гипотенуза
АВ=а:sin 45°=a√2
АН=а•sin60°=a√3/2
sinАВН=АН:АВ=a√3/2):a√2=0,61237
Это синус угла ≈37,76°