В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана (рис. 22).
Доказать: CD — биссектриса и высота.
Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ).
Из равенства треугольников CBD и CAD следует равенство углов
Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.
Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:
1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
1. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла. Большая дуга содержит 360-122=238 градусов. Каждый градус содержит дугу, равную 61:122=0,5 единиц длины. Длина большей дуги равна 0,5*238=119 Длина большей дуги= 119
360°- вся дуга. 2.Площадь трапеции равна S=1/2(a+b)*h, где a и b основания трапеции, а h высота трапеции. Основания даны, нам нужно узнать высоту трапеции. Рассмотрим получившийся треугольник из боковой стороны трапеции, высоты трапеции и части основания трапеции, которая равна 5 см= ( 18-8)/2. Деленная на 2, т.к. трапеция равнобедренная. Треугольник у нас прямоугольный, значит применяется теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Боковая сторона трапеции - это гипотенуза 13 см, 5 см - это один катет, а высота трапеции - это другой катет.Получаем 13 в квадрате- это 169, 5 в квадрате - это 25, а h в квадрате -это искомое неизвестное.169=25+h в квадрате, решаем уравнение: 169-25=144, выделяем квадрат из 144, он равен 12 см. высота трапеции равна 12 см.Следовательно S трапеции= 1/2(8+18)*12=156 см квадратных.
1. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла. Большая дуга содержит 360-122=238 градусов. Каждый градус содержит дугу, равную 61:122=0,5 единиц длины. Длина большей дуги равна 0,5*238=119 Длина большей дуги= 119
360°- вся дуга. 2.Площадь трапеции равна S=1/2(a+b)*h, где a и b основания трапеции, а h высота трапеции. Основания даны, нам нужно узнать высоту трапеции. Рассмотрим получившийся треугольник из боковой стороны трапеции, высоты трапеции и части основания трапеции, которая равна 5 см= ( 18-8)/2. Деленная на 2, т.к. трапеция равнобедренная. Треугольник у нас прямоугольный, значит применяется теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Боковая сторона трапеции - это гипотенуза 13 см, 5 см - это один катет, а высота трапеции - это другой катет.Получаем 13 в квадрате- это 169, 5 в квадрате - это 25, а h в квадрате -это искомое неизвестное.169=25+h в квадрате, решаем уравнение: 169-25=144, выделяем квадрат из 144, он равен 12 см. высота трапеции равна 12 см.Следовательно S трапеции= 1/2(8+18)*12=156 см квадратных.
Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана (рис. 22).
Доказать: CD — биссектриса и высота.
Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ).
Из равенства треугольников CBD и CAD следует равенство углов
Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.
Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:
1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
вот так-то