АС - більша діагональ, ВД - менша.
АС - ВД = 10см
Нехай ВД = х см, АС = 10 + х см
Діагоналі перетинаються під прямим кутом і діляться навпіл.
СО = ОА = (10 + х) / 2
ВО = ОД = х/2
Розглянемо трикутника ВСО:
він прямокутний кут О = 90градусів
Застосуємо теорему Піфагора:
ВС² = ВО² + СО²
25² = ((10 + х)/2)² + (х/2)²
625 = (100 + 20х + х²)/4 + х²/4
625 = (100 + 20х + 2х²) / 4
625 = (2 * (х² + 10х + 50)) / 4
625 = (х² + 10х + 50) / 2
1250 = х² + 10х + 50
х² + 10х - 1200 =0
шукай по дискрімінанту
Д = 70²
х1 = 30, х2 = -40
х2 = -40 -незадовільняє умову (довжина не може бути відємною)
Отже ВД = 30 см, АС = 30 + 10 = 40 см
S = 1/2 * АС * ВД = 1/2 * 30 * 40 = 600 см²
1) Высота ромба перпендикулярна обеим противолежащим сторонам. -- угол СВЕ=90°, угол FВЕ=СВЕ-CBF=90°-30°=60°⇒
∠ВСF=30°
Противоположные углы параллелограмма равны. ⇒ ВЕ противолежит углу 30°, гипотенуза АВ треугольника АВЕ=2•6=12 см
Все стороны ромба равны ⇒
Р=12•4=48 см
———
2) Обозначим наклонные ВА и ВС;
ВН - расстояние от т.В до прямой. ВА=22 см, угол АВС=45°
ВН⊥АС.
Сумма острых углов прямоугольного треугольника равна 90°⇒
∆ АВН - равнобедренный.
ВН=АВ•sin45°=11√2
Из прямоугольного ∆ ВСН гипотенуза
ВС=√(BH²+CH²)=√(242+82)=18 см