Величина кута AOC дорівнює 72°. Промінь OB бісектриса кута AOC. Промінь OK ділить кут BOC на кути BOK І KOC.Знайди величину кута BOK, якщо BOK : KOC = 3: 1
Сме́жные углы́ — это пара углов, которые дополняют друг друга до 180 градусов. Два смежных угла имеют общую вершину и одну общую сторону, две другие (не общие) стороны образуют прямую линию. Для угла 135 градусов смежным является угол в 45. Если один угол назвать У, а другой Х, то получим два уравнения. У+Х=180 (это по определению смежных углов) . Представив, что Х-больший угол, чем У, то получаем второе уравнение. Х-У=90. Решаем сиситему из двух уравнений. Х+У=180 и Х-У=90. Из второго выражаем Х. Х= 90+У. И подставляем в первое. Получаем: 90+У+У=180. Далее: 90+2У=180. Делим все части уравнения на ". Получаем: 45+У=90. Отсюда У=90-45. У=45 (это меньший угол) . Тогда второй больший будет равен 180-45=135
Проведем перпендикуляры BS1 и MS2. (M - центр AB) Обозначим плоскость треугольника ABS1-желтым цветом. Плоскость β голубым. Поскольку прямая AB лежит в плоскости желтого треугольника,то все ее точки лежат в этой плоскости,а значит точка M тоже лежит в этой плоскости.(аксиома 2). Мы можем интуитивно заявить что отрезок MS2 лежит в плоскости этого треугольника (Да это так ,но этот факт требует доказательства) Итак подтвердим наше предположение: Прямые MS2 || BS1 параллельны, как два перпендикуляра к одной плоскости. А поскольку параллельные прямые всегда лежат в одной плоскости,то прямые MS2 и BS1 лежат в одной плоскости. То есть точки S2,M,B,S1 лежат в одной плоскости. Мы знаем что точки M,B,S1 лежат в плоскости желтого треугольника. То поскольку через 3 данные точки можно провести плоскость и при том только одну. То они не могут лежат в другой плоскости отличной от плоскости желтого треугольника,иначе это противоречило бы первому постулату. А поскольку вместе с ними в одной плоскости весит и точка S2,то она тоже лежит в плоскости треугольника. То и прямая MS2 лежит в плоскости этого треугольника. Ну теперь все очевидно :MS2 -средняя линия треугольника ABS1,откуда: MS2=BS1/2=12/2=6 см ответ:6 cм