Висота проведена з вершинами при основи ривнобедренного трикутника. дилить навпил кут миж основою и бисектрисою кута при основи. знайдить кути. цього трикутника
Я формулировку теоремы не стала удалять (повторить всегда полезно)) но она и не пригодилась... 1/ отрезки касательных, проведенных из одной точки (К) равны... DK=KC 2/ центр вписанной в угол окружности лежит на биссектрисе этого угла)) ОК - биссектриса ∠DKC ∠DKO = ∠CKO ∠DOK = ∠COK 3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу ∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC т.е. DA || KO О --середина АС ---> KO --средняя линия, К --середина ВС DK = KC = (1/2)BC = 6
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
но она и не пригодилась...
1/ отрезки касательных, проведенных из одной точки (К) равны...
DK=KC
2/ центр вписанной в угол окружности лежит на биссектрисе этого угла))
ОК - биссектриса ∠DKC
∠DKO = ∠CKO
∠DOK = ∠COK
3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу
∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC
т.е. DA || KO
О --середина АС ---> KO --средняя линия, К --середина ВС
DK = KC = (1/2)BC = 6