Рассмотрим треугольники МДО и КДР, у которых угол МДО = КДР, как вертикальные углы при пересечении прямых КО и РМ, угол ДРК треугольника КДР равен углу ОМД треугольника МДО, так как они накрест лежащие углы при пересечении параллельных прямых МО и КР секущей РМ. Тогда, по первому признаку подобия треугольников, треугольники МДО и КДР подобны.
В равнобедренной трапеции угол при большем основании будет равен 60 градусов. Проведем диагональ перпендикулярно боковой стороне. В образовавшемся треугольнике на нижнем основании трапеции один из углов 60 градусов, значит другой - 30 градусов. Если окружность описана около трапеции, значит она же описана около этого треугольника. Т.к. треугольник прямоугольный, то радиус описанной окружности равен половине гипотенузы. Отсюда нижнее основание трапеции равно 8. Боковая сторона равна 4 как катет, лежащий против угла в 30 градусов и равный половине гипотенузы. По теореме Пифагора найдем высоту трапеции h=кв.корень(16-4)=кв.корень12=2кв.корня3. площадь равна 0,5(4+8)*h=12кв.корень3.
1)Для решения рассмотрим рисунок
Рассмотрим треугольники МДО и КДР, у которых угол МДО = КДР, как вертикальные углы при пересечении прямых КО и РМ, угол ДРК треугольника КДР равен углу ОМД треугольника МДО, так как они накрест лежащие углы при пересечении параллельных прямых МО и КР секущей РМ. Тогда, по первому признаку подобия треугольников, треугольники МДО и КДР подобны.
Запишем отношение сторон подобных треугольников.
МО / КР = ДО / ДК.
12 / 16 = ДО / 20.
ДО = 12 * 20 / 16 = 15 см.
ответ: ДО = 15 см.
3) ВД =х, ДС=21-х,
ВД/ДС=АВ/АС, х/(21-х) = 18/24. 24х=378-18х, х=9 =ВД, ДС=21-9=12