3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).
AE : CE = 9 : 5
Рассмотрим треугольники AKE и ABC. У них \angle A∠A - общий. \angle AKE=\angle ABC∠AKE=∠ABC как соответственные. Следовательно, треугольники AKE и АВС подобны (по двум углам). Из подобия треугольников следует пропорциональность соответствующих сторон
\dfrac{AE}{AC}=\dfrac{AK}{AB}~~\Rightarrow~~~ \dfrac{9}{14}=\dfrac{AK}{42}~~\Rightarrow~~ \boxed{AK=27}
AC
AE
=
AB
AK
⇒
14
9
=
42
AK
⇒
AK=27
Аналогично, \Delta PEC\sim \Delta ABCΔPEC∼ΔABC (по двум углам).
\dfrac{CE}{AC}=\dfrac{PE}{AB}~~\Rightarrow~~\dfrac{5}{14}=\dfrac{PE}{42}~~\Rightarrow~~ \boxed{PE=15}
AC
CE
=
AB
PE
⇒
14
5
=
42
PE
⇒
PE=15
\dfrac{BC}{PC}=\dfrac{AB}{PE}~~\Rightarrow~~~\dfrac{BP+PC}{PC}=\dfrac{42}{15}~~\Rightarrow~~ \boxed{\dfrac{BP}{PC}=\dfrac{9}{5}}
PC
BC
=
PE
AB
⇒
PC
BP+PC
=
15
42
⇒
PC
BP
=
5
9
если имеются ввиду углы которые я отметила зелёным, то да
Объяснение:
150 + 30=180
эти углы односторонние, а если сумма односторонних углов равна 180 значит прямые AD и RK параллельны