а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
б) Из ΔABE получаем, что Тогда по теореме Пифагора из ΔADE получаем:
Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
б) Из ΔABE получаем, что Тогда по теореме Пифагора из ΔADE получаем:
Отсюда получаем, что
Объяснение: