Обозначим вершины равнобедренного треугольника A,B, и C с основанием AC. По условию основание на 3 см меньше боковой стороны, значит боковая сторона на 3 см больше основания. Обозначим основание за x. Тогда боковая сторона будет равна (x+3)см. Составим и решим уравнение:x+(x+3)+(x+3)=18;x+x+3+x+3=18;3x+6=18;3x=12;x=12:3;x=4. Мы нашли основание AC, оно равно 4 см. Периметр равнобедренного треугольника равен:боковая сторона+боковая сторона+основание. Значит, сумма длин боковых сторон равна:18-основание AC=18-4=14.
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате