1. Так как 15 < 12 + 9, треугольник с такими сторонами существует. Сравним квадрат большей стороны с суммой квадратов двух других сторон: 15² и 12² + 9² 225 и 144 + 81 225 = 225, значит по теореме, обратной теореме Пифагора, треугольник ответ: в) прямоугольный.
2. Коэффициент подобия: k = 2/5. Площади подобных треугольников относятся как квадрат коэффициента подобия: S₁ : S₂ = 4 : 25 8 : S₂ = 4 : 25 S₂ = 25 · 8 : 4 = 50 ответ: Нет правильного ответа.
3. АВ = ВС = (Рabc - AC) / 2 = (32 - 12) / 2 = 20 / 2 = 10 см Найдем площадь по формуле Герона (р - полупериметр): Sabc = √(p·(p - AB)·(p - BC)·(p - AC)) Sabc = √(16 · 6 · 6 · 4) = 4 · 6 · 2 = 48 см² Из другой формулы площади найдем радиус вписанной окружности: Sabc = p·r r = Sabc / p = 48 / 16 = 3 см ответ: б) 3 см
4. Проведем радиусы в точки касания. Отрезки касательных, проведенных из одной точки, равны: АК = АМ = 5 см, ВК = ВЕ = 12 см СМОЕ - квадрат со стороной, равной радиусу вписанной окружности, который обозначим r. По теореме Пифагора составим уравнение: (5 + 12)² = (5 + r)² + (12 + r)² 17² = 25 + 10r + r² + 144 + 24r + r² 2r² + 34r + 169 = 289 r² + 17r - 60 = 0 D = 289 + 240 = 529 r = (- 17 + 23) / 2 = 6 / 2 = 3 Второй корень отрицательный, не подходит по смыслу задачи. АС = 5 + 3 = 8 см ВС = 12 + 3 = 15 см ответ: г) 8 см и 15 см.
5. Центр окружности, описанной около прямоугольника, лежит в точке пересечения его диагоналей, значит радиус равен половине диагонали, которую находим по теореме Пифагора: r = d/2 = √(a² + k²) / 2
барсук Барчук Евгений барсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгенийбарсук Евгений