a) Расстояние от точки A до прямой CB равно 9√3
б) Проекция катета AC на прямую AB равна 13,5
Объяснение:
Расстояние от точки A до прямой CB являются прямая AC Дальше воспользуемся свойствами пр-го Δ-ка у которого углы 30 ; 60 ; 90 градусов Пусть наименьший катет в ΔABC который противолежит углу в 30 ° будет CB=α тогда ; AB=2α гипотенуза которая противолежит углу в 90° ; AC=α√3 наибольший катет который противолежит углу в 60°a) Исходя из выше сказанного в нашем случае (AB -гипотенуза ; AB- наименьший катет ; AC -наибольший катет ) AB=18=2α тогда CB=α=18:2= 9 ; a как нам известно AC=α√3=9√3б) Для проекций катетов есть формулы (на рисунке ) В нашем случае проекция АВ на прямую АС пусть будет
М∈АВ
N∈BC
P∈AC
И делит стороны так, что
MB=2AM, NC=2BN, AP=2PC, т.е. соотношение1:2
Отношение площадей треугольников имеющих равный (общий) угол равно произведению сторон содержащих этот угол. Доказательство этого факта приводить не буду. Желающие найдут (сделают :-) сами.
Рассмотрим, исходя из этого, треугольники АВС и AMP.
S(ABC)/S(AMP) = (AB*AC)/(AM*AP) (1)
Примем меньший отрезок АМ за 1 часть, соответственно MB будет 2 части.
Т.е. AB/AM = 3/1, AC/AP=3/2, подставим эти соотношения в выражение (1) для соотношения площадей треугольников получим:
S(ABC)/S(AMP) = (3*3)/(1*2) = 9/2, т.е. S(AMP)=(2/9)*S(ABC) =(2/9)*S
Можно провести аналогичные рассуждения для оставшихся треугольников, но учитывая соотношения сторон легко :-) заметить, что площади всех маленьких треугольников AMP, MBN, PNC равны и равны (2/9)*S.
Т.о. искомая площадь треугольника MNP будет равна
S-3*((2/9)*S) = 1/3 S, одной трети площади ABC, равной S.
И ещё. В чем смысл подобных задач? В том что ты учишься находить решение.
Сегодня это геометрия. Через годы это будут другие, более серьезные проблемы. На этом сайте ты научишься только списывать. Скачай себе
"Гордин-Планиметрия 7-9" и реши хотя бы одну задачу на соотношение площадей. Тогда я буду считать, что не зря потратил время, набивая всё это.
С тебя "69" :-)