найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь первого треугольника.
р = (36+24+42):2 = 51 см
h = 2:24*v51(51-24)(51-36)(51-42) = 35,9 см
S = 1/2 * 24 * 35,9 = 430,8 см^2
Площадь второго треугольника.
р = (8+12+14):2 = 17
h = 2:12*v17(17-12)(17-8)(17-14) = 7,9 см
S = 1/2 * 12*7,9 = 47,4 см^2
47,4 : 430,8 = 1 : 9
ответ: отношение площадей 2 треугольников 1 : 9.
1) ΔAOC = ΔBOC по двум катетам (OC - общий, AO = OB т.к. O - середина AB) ⇒ CB = AC = 10
ответ: 10
2) В равнобедренном треугольнике углы при основании равны ⇒ ∠ABC = ∠ACB = (180 - 80)/2 = 50°
ответ: 50°
3) ∠CAB смежный с углом ∠BAK ⇒ ∠CAB = 180 - 120 = 60°
Рассмотрим ΔABC - прямоугольный
∠CAB = 60° ⇒ ∠ABC = 90 - 60 = 30°
Катет, лежащий напротив угла в 30° равен половине гипотенузы: AC = 1/2 AB
ответ: 12
4) В четырёхугольнике ABCD диагонали пересекаются и точкой пересечения делятся пополам ⇒ ABCD - параллелограмм
В параллелограмме сумма углов, прилежащих к одной стороне, равна 180°
ответ: 72°
так как медианы делятся в точке пересечения в отношений 2:1, считая от вершины то пусть длина медианы одной равна х, то вторая тоже х, так как треугольник проведены к боковым сторонам , то по теореме косинусов
медианы равны