Диагонали пересекаются в точке О. Благодаря свойству трапеции ΔАОВ=ΔСОД, а тр-ки ВОС и АОД подобны. Их коэффициент подобия: k²=S/s=54/6=9 ⇒ k=3. Пусть ВО=х, СО=у, тогда ДО=3х, АО=3у. α - угол между диагоналями, его синус одинаковый для всех треугольников, образованных пересекающимися диагоналями. Сумма тр-ков АОВ и СОД: S1=(х·3у·sinα+3х·у·sinα)/2=(6xy·sinα)/2. Сумма тр-ков ВОС и АОД: S2=(х·у·sinα+3x·3y·sinα)/2=(10xy·sinα)/2. S1/S2=6/10=3/5. По условию S2=6+54=60, значит S1=3·S2/5=36. ΔАОВ=ΔСОД=36/2=18 (ед²).
Нужно нарисовать треугольник. Расстояние от данной точки до прямой - это высота данного треугольника. Эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см). Наклонные - это гипотенузы полученных прямоугольных треугольников (Обозначим их длины через х и х+5). А высота исходного треугольника - это общий катет этих двух прямоугольных. Выразим этот катет из обоих треугольников с теоремы Пифагора: х² - 81 = (х + 5)² - 256 х² - 81 = х² + 10х + 25 - 256 х² - 81 = х² + 10х - 231 10х = 150 х = 15 Мы нашли одну из наклонных. А теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных): 225 - 81 = а² (где а - та самая высота) а² = 144 а = 12 ответ 12
Благодаря свойству трапеции ΔАОВ=ΔСОД, а тр-ки ВОС и АОД подобны. Их коэффициент подобия: k²=S/s=54/6=9 ⇒ k=3.
Пусть ВО=х, СО=у, тогда ДО=3х, АО=3у.
α - угол между диагоналями, его синус одинаковый для всех треугольников, образованных пересекающимися диагоналями.
Сумма тр-ков АОВ и СОД:
S1=(х·3у·sinα+3х·у·sinα)/2=(6xy·sinα)/2.
Сумма тр-ков ВОС и АОД:
S2=(х·у·sinα+3x·3y·sinα)/2=(10xy·sinα)/2.
S1/S2=6/10=3/5.
По условию S2=6+54=60, значит S1=3·S2/5=36.
ΔАОВ=ΔСОД=36/2=18 (ед²).