разделим решение на 2 части: анализ и нахождение величин
1) анализ
обозначим боковые стороны и меньшее основание за x
длина той части высоты, которая ближе к меньшему основанию - м (далее - во)
длина той части высоты, которая ближе к большему основанию - б (далее - он)
пусть трапеция - abcd. bc - меньшее основание, аb и cd - боковые стороны.
проведём высоту bh, диагональ - ас. точка пересечения - о
треугольники овс и она - подобные (оба прямоугольные, есть вертикальные углы аон=вос)
тогда ан = вс* (он/во) = х* (б/м)
площадь трапеции: s = bh*(bc+ad)/2 = bh*(bc+ah) = 18*x*(1+б/м)
итак, осталось найти х.
поясню, почему требуется обозначения б и м. есть 2 решения (в зависимости от того, какие длины мы присвоим отрезкам он и во) . поэтому будут 2 значения б/м:
б/м = 10/8 или б/м = 8/10
2) нахождение величин
обозначим угол всн = t (дальше легче писать)
cos (t) = ah/ab = (x*(б/м)) /x = б/м.
sin (t) = вн/ав = 18/х
cos^2(t) + sin^2(t) = 1
(б/м) ^2 + 324/x^2 = 1
324/x^2 = 1 - (б/м) ^2
так как 324/x^2 > 0, то приходим, что б/м = 8/10. (т. е. второго решения больше нет) .
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
разделим решение на 2 части: анализ и нахождение величин
1) анализ
обозначим боковые стороны и меньшее основание за x
длина той части высоты, которая ближе к меньшему основанию - м (далее - во)
длина той части высоты, которая ближе к большему основанию - б (далее - он)
пусть трапеция - abcd. bc - меньшее основание, аb и cd - боковые стороны.
проведём высоту bh, диагональ - ас. точка пересечения - о
треугольники овс и она - подобные (оба прямоугольные, есть вертикальные углы аон=вос)
тогда ан = вс* (он/во) = х* (б/м)
площадь трапеции: s = bh*(bc+ad)/2 = bh*(bc+ah) = 18*x*(1+б/м)
итак, осталось найти х.
поясню, почему требуется обозначения б и м. есть 2 решения (в зависимости от того, какие длины мы присвоим отрезкам он и во) . поэтому будут 2 значения б/м:
б/м = 10/8 или б/м = 8/10
2) нахождение величин
обозначим угол всн = t (дальше легче писать)
cos (t) = ah/ab = (x*(б/м)) /x = б/м.
sin (t) = вн/ав = 18/х
cos^2(t) + sin^2(t) = 1
(б/м) ^2 + 324/x^2 = 1
324/x^2 = 1 - (б/м) ^2
так как 324/x^2 > 0, то приходим, что б/м = 8/10. (т. е. второго решения больше нет) .
итого: 324/x^2 = 1 - (8/10)^2 = 0,36
x = 30
s = 18*x*(1+б/м) = 18*30*(1+ 8/10) = 972