Точки А1 и В1 - середины сторон ∆ АСВ. Соединим их. В1А1 – срденяя линия ∆ АСВ и по свойству средней линии В1А1║ АВ.⇒ Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали. Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции). Доказательство. Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции. Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней. Если основания и высоты треугольников равны, их площади равны. ∆ АВ1А1= ∆ АВ1О+∆ В1ОА1 ∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1 Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны. S ∆ АОВ1=S∆ ВОА1, ч.т.д.
с =8,7см
а=b=2×c=2×8,7=17,4см
Р=a+b+c
P=8,7+17,4+17,4=43,5см