Известна формула радиуса описанной окружности треугольника. R=abc:4S, где а,b,c- стороны треугольника, Ѕ - его площадь. Для этой формулы нужна высота треугольника. Ее можно выразить через основание, и в итоге самостоятельно прийти к формуле радиуса описанной окружности равнобедренного треугольника: R=a²:√(4a²-b²) - где а- боковая сторона, b- основание. Возведем обе части уравнения в квадрат: R²=а⁴:(4а²-b²) и выразим b² через радиус и боковую сторону: R²*4a²-R²*b²=a⁴ R²-4a²-a⁴=R²*b² a²(4R²-a²)=R²*b² b²=a²(4R²-a²):R² Подставим в получившееся выражение известные величины: b²=400*(625-400):156,25 b²=576 b=24 (единиц длины)
Имеем треугольник АВС со сторонами АВ:ВС=15:41; и высотой ВД; Проекции сторон на основание АС равно АД=12; СД=40; Обозначим коэффициенты подобия сторон AB за Х, она будет равна 15 Х, а проекцию стороны СД за У и она будет равна 41У; Тогда справедливо равенство:15Х+41У=56;Так как их сумма равна 56 по УСЛОВИЮ ЗАДАЧИ; Приняв коэффициенты подобия за 1 в обоих случаях имеем15+41=56; Проверим данный ответ через длину их общей высоты АД, она должна иметь одно и то же значение: АД^2=41^2-40^2=81; 15^2-12^2=81; 81=81; Решение верно! ответ:АВ=15; ВС=41;
R=abc:4S, где а,b,c- стороны треугольника, Ѕ - его площадь.
Для этой формулы нужна высота треугольника.
Ее можно выразить через основание, и в итоге самостоятельно прийти к формуле радиуса описанной окружности равнобедренного треугольника:
R=a²:√(4a²-b²)
- где а- боковая сторона, b- основание.
Возведем обе части уравнения в квадрат:
R²=а⁴:(4а²-b²)
и выразим b² через радиус и боковую сторону:
R²*4a²-R²*b²=a⁴
R²-4a²-a⁴=R²*b²
a²(4R²-a²)=R²*b²
b²=a²(4R²-a²):R²
Подставим в получившееся выражение известные величины:
b²=400*(625-400):156,25
b²=576
b=24 (единиц длины)