1. Дано: две концентрические окружности. АD-диаметр большей, СВ- диаметр меньшей окр.
Найти АВ/СD
Решение.
Треугольники АОВ и DОС равны по 1 признаку равенства треугольников. в них АО=DО как радиусы большой окружности, ОВ=ОС как радиусы малой окружности, углв АОВ и DОС равны как вертикальные, а из равенства треугольников следует равенство сторон АВ и СD, поэтому отношение равных сторон равно единице.
2. Дано. АВ- диаметр окружности. радиус =6 см
∠АВК=30°
Найти расстояние от точки А до прямой ВК
Решение.
соединим А и К, угол АКВ=90°, т.к. это вписанный угол, опирающийся на диаметр АВ, равный 2*6, а расстояние АК- искомое, это катет, лежащий против угла в 30°, он равен половине гипотенузы, т.е. 2*6*2=6/см/
Объяснение:
Рассмотрим треугольники ABF и CBD.
AB =BC, угол A =углу С по условию, угол В - общий. Треугольники равны по стороне и двум прилегающим к ней углам (второй признак равенства треугольников)
Из равенства треугольников следует равенство углов: <AFB=<CDB, и сторон: BF=BD.
По свойству смежных углов имеем:
<CFO=180°-<AFB
<ADO=180°-<CDB=180°-<AFB, следовательно <CFO=<ADO.
AD=AB-BD
CF=BC-BF, т.к. AB=BC, а BD=BF, то AD=CF.
Рассмотрим треугольники ADO и CFO.
<А=<С - по условию; AD=CF, <CFO=<ADO -из доказанного выше, следовательно △ ADO= △ CFO по стороне и двум прилегающим к ней углам (второй признак равенства треугольников).
Из равенства треугольников следует равенство сторон: AO=CO.
Что и требовалось доказать.