Один катет лежит против угла в 60°, значит второй катет (а) лежит против угла в 90-60=30° и он равен половине гипотенузы (с): с=2а; по теореме Пифагора: (2а)^2=а^2+14^2; 3а^2=196; а=√196/3=14/√3; с=2*14/√3=28/√3; площадь равна половине произведения катетов: S=14*14/2√3=98/√3; площадь равна половине произведения гипотенузы (основания) на высоту: 98/√3=h*28/2√3; h=98/14=7; ответ: 7 Можно по другому: h=a*b/c высота равна произведению катетов, деленная на гипотенузу. Это можно установить из подобия треугольников.
Стереометрическая задача по геометрии по теме Конус. Объем конуса вычисляется по формуле 1/3*Пи*(радиус в квадрате)*Н.
Найдем для начала радиус основания. Если рассмотреть изначально взятый треугольник, то больший из катетов и будет радиусом основания полученного вращением конуса. Вычислим значение радиуса с теоремы пифагора. 100-25=75 Корень из 75 = 5корней_из_3.
Меньший катет при Этом будет равен Высоте конуса, а так как он лежит напротив угла в 30 градусов, то он равен половине гипотенузы, т.е. равен 5. Подставим полученные данные в формулу объема конуса.
1)MOK=KON=75° (ОК бесектриса угла МОN и делит етот угол на два ровние угла
2)угол КОМ з бесект.ОР делит угол на МОР и РОК по 37,5°
РОM=37,5
(5 звёзд )