1) опускаем сторону к основанию - падает в середину, получается 2 одинаковых прямоуг. треуг, по т-ме Пифагора высота = (под корнем) 100 - 36 = 8 S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96. То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h Основание поделено 5:10:5, Отсюда высота = 169 - 25(корень) = 12 S треуг. = 2*1/2*5*12 = 60 S прямоуг.= 10*12=120 S трап.= 60 + 120 = 180
В равнобедренном треугольнике тупой угол (а он может быть только один в треугольнике) равен 120°. Высота из этого угла к основанию, это и медиана, и биссектриса (свойство). Пусть высота из вершины тупого угла равна Х, тогда боковая сторона треугольника равна 2х (против угла 30° лежит катет, равный половине гипотенузы). По Пифагору находим высоту и боковую сторону: 4х²-х²=6². Отсюда х=h=2, 2х=4 (боковая сторона). Площадь треугольника равна S=(1/2)*h*12=12. Эту же площадь можно найти как произведение: (1/2)*высота к боковой стороне*Бок.сторона. Отсюда высота к боковой стороне равна 2S/бок.сторона или 24/4=6. ответ: искомая высота равна 6.
А+С= 62+62=124
В+D=360°-124°=236°
B=118°
A=C= 62°
B=D=118°