Пусть ABCD - параллелограмм. BM=5см и BN=10см - высоты, проведённые из вершины В. Для простоты пусть <BAM=x, <ABM=y, <CBN=z.
В прямоугольном тр-ке △АВМ х+у=90°.
<ABC=y+50°+z.
По свойству углов параллелограмма <BAD+<ABC=180°. Подставляем наши значения:
х+y+50+z=180
Подставляем сюда выражение для х+у:
90+50+z=180
z=40°
cosCBN=BN/BC; BC=BN/cos40°=10/0,766=13,06 см
y=z, поскольку <BAM=<BCN
cosABM=BM/AB; AB=BM/cos40°=5/0.766=6.53 см
Либо можно воспользоваться свойством, что угол между высотами параллелограмма, проведенными из вершины тупого угла, равен острому углу параллелограмма, и получить те же значения.
Пусть abc - произвольный треугольник. проведем через вершину b прямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки a и d лежали по разные стороны от прямой bc.углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd.сумма всех трех углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Объяснение:
Пусть ABCD - параллелограмм. BM=5см и BN=10см - высоты, проведённые из вершины В. Для простоты пусть <BAM=x, <ABM=y, <CBN=z.
В прямоугольном тр-ке △АВМ х+у=90°.
<ABC=y+50°+z.
По свойству углов параллелограмма <BAD+<ABC=180°. Подставляем наши значения:
х+y+50+z=180
Подставляем сюда выражение для х+у:
90+50+z=180
z=40°
cosCBN=BN/BC; BC=BN/cos40°=10/0,766=13,06 см
y=z, поскольку <BAM=<BCN
cosABM=BM/AB; AB=BM/cos40°=5/0.766=6.53 см
Либо можно воспользоваться свойством, что угол между высотами параллелограмма, проведенными из вершины тупого угла, равен острому углу параллелограмма, и получить те же значения.