- ква- Чотирикутники ABCD, DEFM, MNKL, LPOS, SQту драти (рис. 53). Знайдіть суму довжин тих сторін квадратів, які не лежать на прямій AV, якщо довжина відрізка AV до- рівнює 16 см.
В трапеции ABCD боковые стороны AB=CD=13 см, .основания BC=15см ,AD=21 . ОПУСТИМ на основание АD высоты BE И СF. тогда EF=BC=15см AD-EF 36 - 12 AE=FD= 2 = = 2 = 12 см применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см найдем площадь трапеции : S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
AD-EF 36 - 12
AE=FD= 2 = = 2 = 12 см
применив теорему пифагора к прямоугольному треугольнику ABE найдём высоту BE
BE²=AB²-AE²=13²-12²=169-144= 25 или BE=5 см
найдем площадь трапеции :
S ( ABCD)= (BC+AD): 2 ×BE=(15+21):2×5 =36:2×5=90см² ответ: 90 см ²