Сумма углов прилежащих к одной стороне равна 180° (т.к. в трапеции основания параллельны, а боковые стороны будут являться секущими по отношению к параллельным прямым) ТОгда получим, что ∠A+∠B=180° (т.к. они будут односторонними) ⇒ ∠B=180°-∠A=180°-60°=120°.
Абсолютно аналогично ∠D=180°-∠C=180°-110°=70°
Задача 2.
Скорее всего вы допустили опечатку, трапеция не может быть треугольной, только прямоугольной.
Если трапеция ПРЯМОугольная, то:
Пусть дана трапеция ABCD. ∠A=∠B=90°, a ∠D=45°.
Проведем из вершины C высоту CH⊥AD.
Данная высота разделит основание AD на отрезки AH =4см и HD=8см (так как высота отсечет на основании AD, отрезок равный основанию BC, а этот отрезок и есть AH)
Рассмотрим ΔCHD. ∠CHD=90°, a из условия ∠D=45°. Сумма всех углов треугольника равна 180° ⇒ ∠HCD=180°- ∠CHD - ∠D= 180°- 90°-45° = 45° ⇒ ΔCHD - равнобедренный и прямоугольный ⇒ HD=CH=8 см
Задача 3.
Длина среденй линии трапеции вычисляется по формуле:
ср.лин.=(a+b)/2, где a и b - основания трапеции
Подставим в формулу известные нам значения:
20 = (12+ b)/2. и решим это как линейное уравнение с одной неизвестной:
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
ответ: Задача 1. 70° и 120°
Задача 2. 8 см
Задача 3. 28 см.
Объяснение: Задача 1.
Пусть дана трапеция ABCD. ∠A=60°, a ∠C=110°.
Сумма углов прилежащих к одной стороне равна 180° (т.к. в трапеции основания параллельны, а боковые стороны будут являться секущими по отношению к параллельным прямым) ТОгда получим, что ∠A+∠B=180° (т.к. они будут односторонними) ⇒ ∠B=180°-∠A=180°-60°=120°.
Абсолютно аналогично ∠D=180°-∠C=180°-110°=70°
Задача 2.
Скорее всего вы допустили опечатку, трапеция не может быть треугольной, только прямоугольной.
Если трапеция ПРЯМОугольная, то:
Пусть дана трапеция ABCD. ∠A=∠B=90°, a ∠D=45°.
Проведем из вершины C высоту CH⊥AD.
Данная высота разделит основание AD на отрезки AH =4см и HD=8см (так как высота отсечет на основании AD, отрезок равный основанию BC, а этот отрезок и есть AH)
Рассмотрим ΔCHD. ∠CHD=90°, a из условия ∠D=45°. Сумма всех углов треугольника равна 180° ⇒ ∠HCD=180°- ∠CHD - ∠D= 180°- 90°-45° = 45° ⇒ ΔCHD - равнобедренный и прямоугольный ⇒ HD=CH=8 см
Задача 3.
Длина среденй линии трапеции вычисляется по формуле:
ср.лин.=(a+b)/2, где a и b - основания трапеции
Подставим в формулу известные нам значения:
20 = (12+ b)/2. и решим это как линейное уравнение с одной неизвестной:
20*2=12+b
b=40-12
b=28см.