М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksusa8613
ksusa8613
06.05.2022 10:39 •  Геометрия

Из угла ADC параллелограмма ABCD проведена биссектриса угла. В месте касания стороны AB она образует угол DFB, равный 140°. Найдите углы параллелограмма.


Из угла ADC параллелограмма ABCD проведена биссектриса угла. В месте касания стороны AB она образует

👇
Ответ:

∠A = ∠C = 100°, ∠ADC = ∠B = 80°

Объяснение:

1) ∠DFB = 140° ⇒ ∠AFD = 180° - ∠DFB = 180° - 140° = 40° (∠DFB и ∠AFD смежные)

2) ABCD – параллелограмм ⇒ AB ║DC ⇒ ∠AFD = ∠FDC = 40° (накрест лежащие углы при параллельных прямых)

3) DF - биссектриса ∠ADC ⇒ ∠ADF = ∠FDC = 40° ⇒ ∠ADC = ∠ADF + ∠FDC = 40° + 40° = 80° ⇒ ∠B = 80° (∠ADC = ∠B, т.к. противолежащие углы параллелограмма равны)

4) ∠А = ∠С = 180° - 80° = 100° (∠А = ∠С, т.к. противолежащие углы параллелограмма равны)

4,6(9 оценок)
Открыть все ответы
Ответ:
Нафаня158
Нафаня158
06.05.2022

Площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. У этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.

SΔ= ½ ab · sin γ

S = ½ · ¼a² · (√3)/2 = \frac{\sqrt{3}a^2}{16} (кв.ед.)

Из формулы площади шестиугольника S=\frac{3 \sqrt{3} a^2}{2} выражаем сторону а:

a^2 = \frac{2S}{3 \sqrt{3}} 

a^2 = \frac{128}{3 \sqrt{3}}

Подставляя в формулу площади треугольника, находим, что SΔ = 8/3 кв.ед.

6SΔ = 16 кв.ед.

Площадь полученного шестиугольника равна 64-16=48 (кв.ед.) 

 

 

4,5(22 оценок)
Ответ:
nelyaaa01
nelyaaa01
06.05.2022
Так как расстояние от точки А до оси абсцисс (оно равно 3) меньше радиуса 5, то точек на оси абсцисс, расстояние от которых до точки А равно 5, будет 2. Они находятся как точки пересечения окружности радиусом 5 с центром в точке А.
Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0.
Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25.
Получили квадратное уравнение х²-2х-15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня:   
x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5;   x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.   
Имеем 2 центра: (-3; 0) и (5; 0)

ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5:
(х+3)² + у² = 5²,
(х-5)²+ у² = 5².
4,4(77 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ