В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,
В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС)
Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам).
ВД - их общая сторона
В ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними.
По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.
15 см. 7,5 см
Объяснение:
45:2=22,5 см полупериметр прямоугольника
6+3=9 всего частей
22,5:9=2,5 см одна часть
6*2,5=15 см длина прямоугольника
3*2,5=7,5 см ширина прямоугольника