М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SashaZanevskaya
SashaZanevskaya
21.04.2020 16:56 •  Геометрия

Дан параллелограмм АВСД. Через точку К, принадлежащую стороне АВ провели плоскость, параллельную стороне АД, которая пересекает диагональ ВД в точке М. Найдите длину диагонали ВД, если известно, что АК : КВ = 3 : 5, ВМ=3,5 см.

👇
Открыть все ответы
Ответ:
Deztroyer
Deztroyer
21.04.2020
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу.
h=sqrt 2*8= 4
Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20
sqrt-корень
с-гипотенуза
2) Тангенс по определению отношение катетов.
Там дробь, но она сокращена.
По теореме Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
Чтобы получилось 51^2
8 и 15 - мало
16 и 25 - мало
24 и 45 - как раз.
24^2+45^2=51^2
576+2025=2601
ответ: 24 и 45
Решите хотя-бы одну , . 1) перпендикуляр, проведённый из вершины прямоугольника к его диагонали, дел
4,5(92 оценок)
Ответ:
киви1403
киви1403
21.04.2020
1. Объем шара V=4/3π*r³. Объем конуса V=1/3SH.
Так как угол при образующей конуса равен 60°, то его образующие вместе с диаметром основания составляют равносторонний треугольник. И раз так, по теореме Пифигора, квадрат радиуса основания конуса равен разности квадратов его диаметра (этому значению равна длинна его образующей) и высоты:
r^2= 4r^2-H^2 \\ H^2=3r^2 \\ H=r \sqrt{3}\\ r=\frac{H}{\sqrt{3}}
Площадь основания конуса будет π*r². Следовательно, объем конуса будет:
\frac{1}{3} \pi (\frac{H}{ \sqrt{3} })^2*H= \frac{1}{9} \pi H^3
Так как диаметр шара равен высоте конуса, объем шара можно представить как:
V= \frac{4}{3} \pi (\frac{H}{2}) ^3= \frac{1}{6} \pi H^3.
Найдем теперь отношение объемов конуса и шара:
\frac{\frac{1}{9} \pi H^3}{\frac{1}{6} \pi H^3} = \frac{6}{9}= \frac{2}{3}
Следовательно, объем данного конуса составляет 2/3 объема данного шара.
2. Радиус описанной вокруг цилиндра сферы вычисляется по формуле:
R= \sqrt{1/4H^2+r^2}
 Объем цилиндра равен площади его основания, умноженной на высоту. Отсюда высота цилиндра Н=96/48=2 см. Площадь основания равна π*r², отсюда:
r= \sqrt{ \frac{48}{ \pi } }=4 \sqrt{ \frac{3}{ \pi } }.
Площадь сферы равна 4π*R². Подставляем в эту формулу уже найденные значения:
S=4 \pi R^2=4 \pi ( \frac{1}{4}H^2+r^2)= 4 \pi ( \frac{1}{4}*2^2+ \frac{48}{ \pi } )=4 \pi (1+ \frac{48}{ \pi } )= \\ =4 \pi +192
Площадь сферы будет равняться (192+4π) см².
4,6(60 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ