ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
g₀ / g₁ = 40 / 2.25
отсюда g₁ = 2.25g₀ / 40 = 22.5 / 40 = 0.6 м/с²
AM = 4 см; AC ~ 7,84; R ~ 3 см;
Объяснение:
a)
∠BAC =180-B-C =180-50-30 =100
∠BAM =∠BAC/2 =50 (AM - биссектриса ∠BAC)
∠BAM=∠B => △BMA - равнобедренный, AM=BM=4 (см)
б) ∠BМА = 180 - ∠В - ∠ВАМ = 180 - 50 - 50 = 100; ∠АМС смежный углу ∠ВМА, значит ∠АМС = 180 - ∠ВМА = 180 - 80 = 100.
АС ищем через теорему синусов, АМ/sin C = AC/sin AMC => AC = AM*sinAMC/sin C = 4 * sin 100/sin 30 = 8 * sin 100 ~ 8 * 0,98 ~ 7,84см
с) Радиус тоже через теорему синусов.
AC/sinB = 2R => R = AC / 2 * sin B = 7,84 / 2 * sin 50 ~ 3 см
Рисунок прикрепляю
ответ: AM = 4 см; AC ~ 7,84; R ~ 3 см;
Выполнил Барановский Владислав
Можно лучший ответ)