1.треугольник АВС прямоугольный, АВ=20, ВС=10. Гипотенуза-20, катет-10, значит уг САВ=30град. 2. Тогда уг АВС = 60 град 3. По условию т М делит АВ пополам, значит ВМ=10 4. Рассмотрим треуг МВС, МВ=ВС- по построению, уг В=60 град - это вершина равнобедренного треуг МВС. Значит два угла при основании равны между собой по свойству равнобедренного треугольника. 180-60=120(град)-сумма углов при основании, 120:2=60(град)-углы при основании. 5. все углы в треуг МВС 60 град, знгачит это равносторонний треугольник. Значит СМ=МВ=ВС=10
ответ: СМ=10
2. АN,CM-медианы по условию задачи, а медианы в треугольнике в точки пересечения делятся 2:1, считая от вершины. Значит АО=2ОN ON=12:3=4(см) АО=2*4-8(см)
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
А) геометрическая, множества, одинаковом, центральной
Б) отрезок, заданной
2.б
3в
4в
5б
6в
7б
8 а-DK
Б-MP, DB
В-DO, MO, AO, CO, BO, PO