М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
И55373919
И55373919
21.05.2021 23:59 •  Геометрия

Знайти координати та довжину вектора С (5, - 4), D(-2,7)

👇
Открыть все ответы
Ответ:
yyuyuy
yyuyuy
21.05.2021

Основание равнобедренного треугольника АВС  - сторона ВС, так как прямая,параллельная основанию равнобедренного треугольника АВС пересекает стороны АВ и АС в точках М и N на сторонах АВ и АС по условию. Значит <ABC=<ACB как углы при основании.

Углы <AMN=<ABC и <ANM=ACB как соответственные углы при параллельных прямых MN и BC и секущих АВ и АС соответственно. Следовательно, треугольник MАN равнобедренный с основанием MN, так как углы при стороне MN равны между собой.

Что и тоебовалось доказать.

4,8(7 оценок)
Ответ:
MezarYT
MezarYT
21.05.2021

Углы B и C в рассматриваемом равнобедренном треугольнике равны (как углы между основанием и равными рёбрами). Их градусную меру можно определить через известное значение косинуса

arccos \frac{\sqrt{3}}{2} = 30°.

 

Площадь треугольника найдём как сумму двух одинаковых площадей прямоугольных треугольников. Для этого проведём из вершины A высоту на основание BC. Эта высота AF для равнобедренного треугольника будет также биссектрисой угла A и медианой, делящей основание BC пополам.

 

Сумма углов треугольника ABC равна 180°. Значит, угол A будет равен 180° - 30° - 30° = 120°. Половина угла равна 60°.

 

Итак, имеем два равных треугольника ABF и ACF с углами B=C=30° и гипотенузами AB=AC=6. Высоту AF найдём как произведение гипотенузы AB на косинус угла BAF = 0,5 углов A = 60°: AF = 6 · 0,5 = 3. Половину основания найдём из теоремы Пифагора:

AF^2 + BF^2 = AB^2 \; \Rightarrow \; BF = \sqrt{AB^2 - AF^2} = \sqrt{6^2 - 3^2} = \sqrt{36 - 9} = \sqrt{27} = 3\sqrt{3}

Проверим, зная косинус угла B:

BF = AB \cdot cos B = 6 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3}

 

Площадь прямоугольного треугольника равна половине произведения его катетов. Полная площадь равнобедренного треугольника равна сумме площадей равных треугольников ABF и ACF. Получим:

S = 2 \cdot \frac{1}{2} \cdot BF \cdot AF = BF \cdot AF = 3\sqrt{3} \cdot 3 = 9\sqrt{3}

4,4(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ