Пусть ABCD - параллелограмм, стороны AB=CD=26 см, стороны AD=BC=32 см.
Угол B равен углу D и они по 150 градусов, а углы A и C по 30 градуов, т.к. сумма односторонних углов в параллелограмме равна 180 градусов.
Проведем высоту из точки B, обозначим точку её пересечения со стороной AD-О.
У нас получился прямоугольный треугольник AOB. В коротором угол AOB=90 градусов, угол BAO=30 градусов, гипотенуза AB=26 см.
1) Найдем нашу высоиту BO. По теореме синусов и косинусов: катет, лежащий против угла в 30 градусов, равен половине гипотенузы, т.е. BO=0.5*AB=0.5*26=13 см.
2) Плотщадь параллелограмма S=основание*h=AD*BO=32*13=416 см2.
ответ: S=416 см2.
Площадь поверхности призмы складывается из суммы площадей 2-х оснований и площади ее боковой поверхности.
Площадь основания здесь - площадь прямоугольного треугольника.
Площадь прямоугольного треугольника равна половине произведения его катетов.
S=14·48:2=336
Площадь боковой поверхности призмы равна сумме площадей ее граней.
Площадь грани прямоугольной призмы равна произведению основания грани на высоту.
Основаниями граней этой призмы являются стороны прямоугольного треугольника, в котором длины катетов даны, гипотенуза неизвестна.
Гипотенузу найдем по теореме Пифагора, она равна:
√(48²+14²)=√(2304+196)=50
Площадь каждого основания призмы равно 336, обоих
S оснований = 336·2= 672
Обозначив высоту призмы h, запишем уравнение площади её полной поверхности:
14·h+48·h+50·h +672=728
112·h=56
h=56:112=0,5
Высота призмы 0,5