Находим координаты точки М - середины стороны ВС: М((3+2)/2=2,5; (4+1)/2=2,50 = (2,5; 2,5). Уравнение медианы АМ : (Х-Ха)/(Хм-Ха) = (У-Уа)/(Ум-Уа). Подставив координаты точек, получаем каноническое уравнение:: , или приведя к целым знаменателям Приведя к общему знаменателю, получаем обще уравнение медианы АМ: Х - 9У + 20 = 0. Или в виде уравнения с коэффициентом: у = (1/9)х + (20/9).
Высота АД перпендикулярна АС, поэтому составляем уравнение стороны АС: АС: (х+2)/4 = (у-2)/-1, АС: х+4у-6=0, АС: у = -(1/4)х+(6/4). Коэффициент а высоты ВД равен -1/(-(1/4)) = 4. Подставим координаты точки В: 4= 4*3+С, отсюда С = 4-12 =-8. Уравнение высоты ВД: у = 4х-8.
Для определения углов нужны длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √29 ≈ 5.385164807, BC = √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3.16227766, AC = √((Хc-Хa)²+(Ус-Уa)²) = √17 ≈ 4.123105626.
cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = -0.076696 (по теореме косинусов). Угол С равен 1.647568 радиан или 94.39871 градусов.
Пусть, для простоты восприятия, трапеция будет прямоугольной, как это показано на рисунке, хотя на конечный ответ это не повлияет. Обозначим высоту трапеции ВЕ=Н, а высоту треугольника ВСМ ВР=h. Площадь трапеции: S=Н·(АД+ВС)/2=Н·(2+4)/2=3Н. Площадь тр-ка ВСМ: S(ВСМ)=ВС·ВР/2=2h/2=h. S(ВСМ):S(АМСД)=1:3=1x:3x, S(ВСМ)+S(АМСД)=1x+3x=4x=S ⇒ S(ВСМ)=S/4. h=3H/4 ⇒ h:H=3:4. Треугольники АВЕ и МВР подобны по трём углам, значит ВР/ВЕ=МР/АЕ, МР=ВР·АЕ/ВЕ=h·AE/H=3АЕ/4. АЕ=АД-ЕД=АД-ВС=4-2=2. МР=3·2/4=1.5. МТ=МР+РТ=МР+ВС=1.5+2=3.5 - это ответ.
Объяснение:
3)тр-к АВС, АВ=ВС=20, ВН-высота, по теор. синусов АВ/sinC=2R, 20/sinC=25, sinC=20/25=4/5, из тр-ка ВНС sinC=ВН/ВС, ВН=ВС*sinC=20*4/5=16, из тр-ка ВНС HC^2=BC^2-BH^2=400-256=144,
HC=12, AC=24, S=1/2AC*BH=1/2*24*16
1)РТ- нижнее основание. т.к. средняя линия=16, то GR+PT=32,тогда GP=RT=44-32/2=6, RS=6, тр-к RST- равнобед.,<RST=<GRS(накрестю леж. при парал-х прямых, значит тр-к SRT- равност-й, ST=RT=6, GR=PS=x,
2x+6+6+6=44, 2x=26, x=13, PT=13+6=19