Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
Проведем диагональ ВD. Треугольник АВD - равнобедренный с углом при А=60° Отсюда углы при ВD =(180°-60°):2=60° Треугольник АВD=∆ ВСD- равносторонние. ВН - высота. ВН=ВF ∆ НВF - равнобедренный. Угол НВF=60° Углы при НF= по 60° ∆ НВF - равносторонний ВН=ВФ= Р∆ ВНF:3=12:3=4 см Высота равностороннего треугольника равна стороне, умноженной на синус 60° ВН=АВ*(√3):2 см АВ=ВН:(√3):2)=8:√3 см Площадь параллелограмма ( а ромб - параллелограмм) равна произведению его смежных сторон, умноженному на синус угла между ними Ѕ♢= (8:√3)*(√3):2=4 см² ------- Сторону ромба можно найти по т.Пифагора: АВ=√(ВН²+АН²), где АН=АВ:2. Площадь равна произведению высоты на сторону. - Проверьте - получите то же значение стороны и площади ромба.
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.