х²+y²-2x+4y-8=0 Выделим полные квадраты (х²-2x)+ (у² +4y)-8=0 В первую скобку добавим 1, во вторую 4 и отнимем 1 и 4 (х² - 2х + 1) + (у²+4у+4) - 1 - 4 - 8 =0 (х-1)² + (у+2)²=13 Координаты центра данной окружности (1; -2) x²+y²+2x+12x-4=0 Выделим полные квадраты (х²+2x)+ (у² +12y)-4=0 В первую скобку добавим 1, во вторую 36 и отнимем 1 и 36 (х² +2х + 1) + (у²+12у+36) - 1 - 36 - 4 =0 (х + 1)² + (у+6)²=41 Координаты центра данной окружности (-1; -6)
Составляем уравнение прямой, проходящей через точки (1; -2) и (-1; -6) Уравнение прямой в общем виде у = kx+ b Подставляем координаты точек и получаем систему двух уравнений относительно k и b -2 = k·1 + b ⇒ b = - 2 - k -6 = k·(-1) + b
- 6 = - k + ( - 2 - k) -6 = - 2k - 2 ⇒ -2k = - 4 ⇒ k = 2 b = - 2 - 2 b = - 4 ответ. уравнение прямой у = 2х - 4
2 см; 8 см
Объяснение:
Нехай менша основа х см, тоді більша х+6 см.
Середня лінія трапеції дорівнює напівсумі основ.
(х+х+6):2=5
2х+6=10
2х=4
х=2
Менша основа 2 см, більша 2+6=8 см.