1. Т.к. в условии есть речь о гипотенузе и катете, то △MKN — прямоугольный. Обозначим за прямой угол MKN (или же просто K). Он равен 90°.
Обозначим внешний угол к вершине N — «KNO» и найдем угол MKN, смежный с ним. Для этого применим теорему: «сумма смежных углов равна 180 градусов»
∠MKN = 180°−120° = 60°
2. Теперь мы можем найти ∠KMN, т.к. нам известны два угла в треугольнике MKN, и то, что общая сумма всех трёх углов равна 180 градусов.
∠KMN = 180°−(90°+60°) = 30°.
(Можно также найти ∠KMN просто отняв от 90-ста градусов 60 градусов, применяя первое свойство прямоугольных треугольников: «сумма двух острых углов прямоугольного треугольника равна 90°» )
3. Теперь, зная чему равны все углы треугольника и гипотенуза MN, мы можем найти катет KN, применяя 2-е свойство прямоугольных треугольников: «катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы»
То есть KN = ¹/₂MN.
KN = 36 ÷ 2 = 18.
ответ: KN = 18 см.
ответ:34
Объяснение:Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС.
Дано:
Квадрат ABCD, в котором
AB=BC=CD=AD=19 см.
Vвр -?
Vвр = π * r² * h = π * 19² * 19 = 6 859π см³
ответ: Объём полученного тела равен 6 859π см³. Тело вращения - цилиндр.