А1. ответ: 4.
А2. ответ: 4.
А3. ответ: 3.
А4. ответ: 1.
В1. Дано: ΔАВС, АВ = ВС = АС + 5 см, Р = 34 см.
Найти: АВ.
Решение: Пусть АС = х см, тогда АВ = ВС = х + 5,
x + (x + 5) + (x + 5) = 34
3x + 10 = 34
3x = 24
x = 8
АС = 8 см
АВ = ВС = 8 + 5 = 13 см
ответ: боковая сторона 13 см.
В2. Дано: ΔАВС, АВ = АС, АМ - медиана, Pabc = 40 см, Pabm = 33 см.
Найти: АМ.
Pabm = 33 см
АВ + ВМ + АМ = 33
2 · (АВ + ВМ + АМ) = 66
Так как АВ = АС, а ВМ = СМ, то
2АВ + 2ВМ + 2АМ = 66
АВ + АС + ВС + 2АМ = 66
2АМ = 66 - (АВ + АС + ВС) = 66 - Pabc = 66 - 40 = 16
AM = 16/2= 8 см
С1. 1) Если сумма равных сторон равна 26 см, то боковые стороны равны по 13 см, а основание - 10 см.
2) Обозначим боковые стороны а и b, основание - с.
а + с = 26 см
Рabc = 2а + с = 36 см
с = 36 - 2а
с = 26 - а
26 - a = 36 - 2a
a = 10 см
c = 16 см
ответ: 13 см, 13 см, 10 см или 10 см, 10 см, 16 см.
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
r=3,5, т.к. является полоиной средней линии, которая равна стороне квадрата
R=3,5√2, ее диаметр это диагональ квадрата, по т.П. найдем диагональ = √(7^2 + 7^2)=7√2 => отсюда нашли R