1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357. 2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы: 3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60. 4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н. Гипотенуза прямоугольного треугольника равна 10. Высота призмы равна 288/(6+8+10)=12.
Для упрощения решения введем некоторые обозначения BL=l(не известна), BC=b , AB=a(не известна), AL=m, LC=n(тоже не известна) l=b-m l²=ab-mn (формула нахождения длины биссектрисы), m/a=n/b(свойство бисс-сы) a=mb/n Вобщем теперь тебе надо решить уравнение(b-m)²=mb²/n - mn и из него найти n зная b и m) потом когда найдешь n подставишь его и найдешь а Зная а найдешь b и после этого можешь вычислять углы) Обозначим угол при основании треугольника α) a/sinα=b/sin(180-2α) a/sinα=b/sin2α a*sin2α=b*sinα a*2sinα*cosα=b*sinα cosα=b/2a когда вычислишь косинус то найдешь угол α) а потом сможешь найти еще один угол треугольника равный 180-2α) Так найдешь все углы
2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы:
3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60.
4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н.
Гипотенуза прямоугольного треугольника равна 10.
Высота призмы равна 288/(6+8+10)=12.