М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
thevenyaname
thevenyaname
13.03.2023 06:34 •  Геометрия

Напишите каноническое уравнение эллипса, если директриса 32, а экс 0,5

👇
Ответ:
TryCake
TryCake
13.03.2023

Объяснение:

Директрисы эллипса имеют уравнения: x = a/e = 32 и x = -a/e = -32.

Эксцентриситет e = c/a = 0,5

Значит, большая полуось a = 32e = 32*0,5 = 16

Фокальное расстояние c = OF1 = OF2 = ae = 16*0,5 = 8

Но c^2 = a^2 - b^2, поэтому

Малая полуось

b^2 = a^2 - c^2 = 16^2 - 8^2 = 256 - 64 = 192; b = √192 = 8√3

Уравнение эллипса:

x^2/a^2 + y^2/b^2 = 1

x^2/256 + y^2/192 = 1

4,4(28 оценок)
Открыть все ответы
Ответ:
kozarmarjna15
kozarmarjna15
13.03.2023
Из нового синтетического материала изготовили брусок в форме прямоугольного параллелепипеда, полная поверхность которого равна 192 см2.

Брусок был подвергнут давлению по всем граням таким образом, что форма прямоугольного параллелепипеда сохранилась, но каждое ребро уменьшилось на 1 см.

Сравнивая два бруска, имеющих форму прямоугольного параллелепипеда, установили, что длина, ширина и высота второго бруска соответственно на 1 см больше, чем у первого бруска, а объем и полная поверхность второго бруска соответственно на 18 см3 и 30 см2 больше, чем у первого.

Одно из боковых ребер наклонного параллелепипеда составляет равные острые углы с прилежащими к нему сторонами нижнего основания.

Через диагональ нижнего основания произвольного параллелепипеда и середину не пересекающего ее бокового ребра проведена плоскость.

Как относятся объемы образовавшихся при этом частей параллелепипеда?

Дан параллелепипед ^SCDA^jCjDj.

Доказать, что в прямоугольном параллелепипеде ABCDA1B1C1D1 сумма.

1) Пусть Xf, хг и х3 — длины ребер, выходящих из одной вершины некоторого прямоугольного параллелепипеда.

2) Найти длины ребер такого прямоугольного параллелепипеда, у которого сумма всех ребер, полная поверхность и объем соответственно равны 48 см, 88 см2 и 48 см9.

Длины ребер, исходящих из общей вершины некоторого прямоугольного параллелепипеда, являются корнями уравнения а*3+ ~\-bx*-\-cx-}-d=Q.

Определить длину диагонали этого параллелепипеда.

Найти площадь поверхности сферы, описанной около прямоугольного параллелепипеда, три измерения которого являются корнями уравнения Х3+шг2+йлг+с=0.

] Доказать, что сумма квадратов длин всех ребер параллелепипеда равна сумме квадратов длин всех его четырех диагоналей.

Доказать, что из всех прямоугольных параллелепипедов С данной суммой всех ребер наибольший объем имеет куб.

Диагональ прямоугольного параллелепипеда рагаа 13 см, _а диагонали его боковых граней равны 4У10 см и 3]/17 см.

В прямом параллелепипеде стороны основания равны а и Ь, острый угол между ними содержит 60°.

Большая диагональ основания конгруэнтна меньшей диагонали параллелепипеда.

Основанием прямого параллелепипеда служит ромб.

В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60°.

Основанием параллелепипеда служит квадрат.

Определить полную поверхность этого параллелепипеда.

Определить объем прямоугольного параллелепипеда, диагональ которого равна / и составляет о одной гранью угол 30°, а с другой 45°.

Основанием прямого параллелепипеда служит ромб, площадь которого равна Q.

Стороны основания прямоугольного параллелепипеда равны а и Ь.

Стороны основания прямоугольного параллелепипеда равны а и Ь.

Определить объем прямоугольного параллелепипеда, если его диагональ равна d, а длины ребер относятся, как т: п: р.

В прямом параллелепипеде стороны основания равны а и Ь и образуют угол 30°.

Стороны основания прямоугольного параллелепипеда относятся, как т: п, а диагональное сечение представляет собой квадрат с площадью, равной Q.

Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 6 см.

Из медной болванки, имеющей форму пря--моугольного параллелепипеда размером 80 смХ20 смХ Х5 см, прокатывается лист толщиной 1 мм.

В наклонном параллелепипеде проекция бокового ребра на плоскость основания равна 5 дм, а высота равна 12 дм.

Основанием параллелепипеда служит ромб со стороной а и острым углом 30
4,4(40 оценок)
Ответ:
Vika556965
Vika556965
13.03.2023
Для этого надо составить уравнения сторон в виде у = кх + в.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x  - 14 .

Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .

Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .

Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x  - 3.2 .

Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
4,5(14 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ