В правильной шестиугольной призме ABCDEFA,B,C,D,E,F, все ребра равны 1. Найдите расстояние между прямой АА, и плоскостью: а) BCC1; б) CDD1; в) DEE1; e) BFF1; ж) CEE1; 3) CFF1.
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
Объяснение:
1.
AB=6
BC=2
tgB=AC/BC
Из теорема Пифагора
АС=корень((АВ) ^2-(ВС)^2)=корень(36-4)=
=корень32=4корень2
tgB=4корень2 / 2=2корень2
sinB=AC/AB
sinB=4корень2 / 6=2/3×корень2=
=2корень2 /3
2.
<А=30
АВ=10
Катет лежащий против угла 30 равен половине гипотенузе.
ВС=1/2АВ=10:2=5
Из теорема Пифагора :
АС=корень((АВ) ^2-(ВС)^2)=корень(100-25)=
=корень75=5корень3
ответ : ВС=5 АС=5корень3
3
cosA=3/4
sinA^2+cosA^2=1
sinA^2=1-cosA^2=
=1-(3/4)^2=1-9/16=7/16
sinA=корень(7/16)=корень7 /4
tgA=sinA/cosA=корень7 /4 :3/4=
=корень7/4×4/3=корень7/3