Вариант решения. Сделаем для наглядности рисунок. Площадь и основание треугольника нам известны, найдем его высоту. Опустим ее из вершины А к продолжению стороны ВС, точку пересечения обозначим Н. Применим формулу нахождения площади треугольника S=ah:2 из которой h=2S:a=32:8=4 см Ясно, что треугольник АНС - египетский, т.к. гипотенуза равна 5 см, один из катетов 4 см, и НС=3 см, это можно проверить по т. Пифагора. Из прямоугольного треугольника АВН найдем искомую сторону АВ. АВ²=АН²+ВН²= 4²+(8+3)²=16+121=137 АВ=√137=≈11,705 см Другое решение верное, хотя и дало иной ответ, т.к. значения величины угла и его синуса и косинуса, найденные по таблицам, являются обычно приблизительными.
Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма). Пусть А и В-диагонали, тогда А:В=3:4, выразим А=3В:4, составим равенство (Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4) А*А+ (3В:4)*(3В:4)=20*20*4 далее 9В*В:16+В*В=1600 далее 9В*В+16В*В=1600*16 отсюда 25В*В=25600 отсюда В= корень квадратный из 25600/25 =32. т.е одна диагональ = 32, вторая из пропорции А=3В/4= 3*32/4=24 Площадь ромба равна половине произведения его диагоналей. А*В/2=24*32/2=384
Сделаем для наглядности рисунок.
Площадь и основание треугольника нам известны, найдем его высоту.
Опустим ее из вершины А к продолжению стороны ВС, точку пересечения обозначим Н.
Применим формулу нахождения площади треугольника
S=ah:2
из которой
h=2S:a=32:8=4 см
Ясно, что треугольник АНС - египетский, т.к. гипотенуза равна 5 см, один из катетов 4 см, и НС=3 см, это можно проверить по т. Пифагора.
Из прямоугольного треугольника АВН найдем искомую сторону АВ.
АВ²=АН²+ВН²= 4²+(8+3)²=16+121=137
АВ=√137=≈11,705 см
Другое решение верное, хотя и дало иной ответ, т.к. значения величины угла и его синуса и косинуса, найденные по таблицам, являются обычно приблизительными.