у рівнобічної трапеції діагональ є бісектрисою гострого кута.обчисліть периметр трапеції та її середньою лінію,якщо її більша основа та бічна сторона дорівнює відповідно 8см і 4см
Теорема: Средняя линия трапеции параллельна её основаниям и равна их полусумме. Дано: ABCD – трапеция, MN – средняя линия ABCD Доказать, что: 1. BC || MN || AD. 2. MN = 1/2(AD + BC). Доказательство : 1. Рассмотрим треугольники BNC и DNK, в них: а) угол CNB = углу DNK (свойство вертикальных углов); б) угол BCN = углу NDK (свойство внутренних накрест лежащих углов); в) CN = ND (по следствию из условия теоремы). Значит треугольник BNC = треугольнику DNK (по стороне и двум прилежащим к ней углам). Из равенства треугольник BNC =треугольнику DNK следует, что BN = NK, а значит MN – средняя линия треугольника ABK. MN || AD. Так как ABCD – трапеция, то BC||AD, но MN || AD, значит BC || MN || AD. MN = 1/2 AK, но AK = AD + DK, причём DK = BC (треугольник BNC =треугольнику DNK), значит MN = 1/2 (AD + BC). Что и требовалось доказать.
По теореме о сумме углов треугольника имеем:
Угол А + угол В + угол С = 180 градусов;
44 градуса + угол В + 90 градусов = 180 градусов;
угол В = 180 градусов-44градуса-90градусов=46 градусов.
По теореме синусов имеем: АС/sinB=AB/sinC; 15/sin46 = AB/sin90 АВ=15*sin90/sin46=15*1/0.7193=приблизительно 20