ответ: arccos(1/3), это ≈ 70°31`
Объяснение:
Угол между плоскостями – двугранный угол. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Треугольники АВС и ABD – равносторонние, сторона АВ - общая, следовательно, эти треугольники равны между собой. Соответственно, равны и их высоты: СН=DH.
Искомый угол – ∠СНО, образованный высотами обоих треугольников, проведенных к общей стороне АВ.
Центр О правильного треугольника – центр пересечения его высот ( медиан и биссектрис) и является центром вписанной и описанной окружности.
ОН=радиус вписанной окружности и равен 1/3 высоты правильного треугольника. СН - полная высота =1= 3/3.
Угол СНО – искомый, его косинус ОН:СН=1/3:1=1/3
Искомый угол – arccos(1/3), это ≈ 70°31`
Рассмотрим ∆ВОА и ∆ВНА.
АВ – общая сторона;
Диагонали ромба пересекаясь образуют 4 прямых угла и точкой пересечения делятся пополам.
Следовательно угол АОВ=90°, тоесть ∆ВОА – прямоугольный с прямым углом ВОА, и АО=АС÷2=28÷2=14.
Угол ВНА=90°, так как ВН – высота;
Угол BAD=60° по условию;
Углы при одной стороне ромба в сумме равны 180°.
Тогда угол АВС=180°–угол BAD=180°–60°=120°
Диагонали ромба являются биссектрисами его углов. Исходя из этого: угол DBA=угол АВС÷2=120°÷2=60°
Получим что ∆ВОА=∆ВНА как прямоугольные треугольники с равными острым углом и катетом.
Тогда АО=ВН как соответственные стороны, следовательно ВН=14.
ответ: 14