1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Площадь этого пятиугольника очень просто сосчитать напрямую - он состоит из прямоугольника со сторонами b/2 и a√2/2, и треугольника с основанием a√2/2 h = 3b/4 - b/2 = b/4; Гораздо интереснее решить эту задачу вот как :) - рассмотреть сначала проекцию сечения на основание. Прежде, чем считать площадь проекции, я "накрою" квадрат основания сеткой, соединив между собой все середины сторон, и проведя диагонали. Основание "разрежется" на 16 равных равнобедренных прямоугольных треугольников, каждый площадью s1 = a^2/16. проекция сечения на основание "накроет" 4 таких треугольника в зоне треугольника ABD. В зоне треугольника CBD (то есть с другой стороны от диагонали BD) проекция "накрывает" треугольник, который диагональю AC делится на два треугольника с площадями s1/2 (обоснуйте!), то есть общая площадь проекции сечения 5a^2/16; Ясно, что косинус угла между сечением и основанием равен a√2/2b, поскольку сечение параллельно боковой стороне. Отсюда S = (5a^2/16)/(a√2/2b); ну и упростите :)...
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение: