1. Найдите площадь равнобедренного треугольника по боковой стороне и высоте, опущенной на основание, которые равны соответственно 5 см и 2 см.
1/2 основания = √(5^2-2^2)=√21
основание = 2√21
площадь= 1/2 основание*высота = 1/2*2√21*2=2√21 см2
ответ 2√21 см2
2
3
4
Из правил сервиса: "Пользователи признают, что задания, которые содержат большое количество задач, требующих решения, должны быть разделены на два или несколько заданий и в таком виде добавлены в Сервис для других Пользователей. То есть в одном задании не может быть несколько задач".
Секущая плоскость параллельна плоскости основания, то согласно теореме о пересечении двух параллельных плоскостей третьей плоскостью, имеем, что она будет пересекать боковые грани по прямым, параллельным рёбрам основания. Рёбра DB и DC пересечёт по их серединам. Искомое сечение треугольник, рёбра которого средние линии боковых граней и равны 0,5а. (Средняя линия соединяет середины двух сторон треугольника, параллельна третьей стороне и равна её половине). Площадь правильного треугольника равна половине произведения его сторон на синус угла между ними. В правильном треугольнике все углы по 60град.
S=0,5·0,5а·0.5а·Sin60 (0,5=1/2, Sin60= √3/2)
S=1/16·а²·√3
АВ+DC ответ думаю такой