Вы, возможно, ошиблись в условии, и нужно найти площадь треугольника АВС, а не АВD?
Иначе для чего дана длина стороны ВС и отрезка DС? Сделаем рисунок к задаче.
Рассмотрим ⊿ ВDС.
Катет ВD=12 см, гипотенуза ВС=13 см.
С отрезком DС основания они составляют "египетский" треугольник, поэтому этот отрезок равен 5 см.
Треугольник АВD - также прямоугольный, а так как угол А=45°, он и равнобедренный.
Отрезок АD основания равен высоте ВD=12 см
Основание АС треугольника АВС равно
АС=АD+DС=12+5=17 см
S ᐃ АВС=ВD·АС⠰2=102 см²
Обозначим стороны прямоугольника как 3х и 4х.
Сумма двух сторон равна половине периметра, то есть:
3х+4х = 42/2 = 21 см.
7х = 21 см.
х = 21/7 = 3 см.
ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α.
Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2).
Угол между боковой стороной и высотой равен 90-α.
По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2.
ответ: α = 2*20 = 40°.