Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
Построим треугольник ABC АВ примем за 12 см, АС как 10 см.(второй АВ=10, АС=12) проведем высоту ВМ из точки В. Мы получили прямоугольный треугольник АВМ, с прямым углом М и гипотенузой АВ. угол А равен 45 градусов, значит по свойству прямоугольно треугольника угол АВМ равен 45 градусов, следовательно треугольник АВМ равнобедренный, значит АМ=ВМ=х. Дальше по теореме Пифагора(с*=а*+b*, *-квадрат числа) имеем: 12*= х*+х* 144= 2х* х*=72 х= корень из 72 Площадь треугольника равна половине основания на высоту. Высота корень из 72, основание 10 => площадь треугольника равна корень из 72 умножить на 10 и разделить на 2. ответ: 30 корней из 10. второй анологично: АВ=10 - гипотенуза, тогда по теореме Пифагора 10*=х*+х* 100=2х* х*=50 х=корень из 50. Тогда площадь треугольника равна корень из 50 умножить на 10 и разделить на 2. ответ: 25 корней из 2
180-120=60 - сумма оставшихся углов
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
Объяснение: