гипотенуза^2=первый катет^2+второй катет^2;катет=корень из разности гипотенузы и катета!
c=(15^2-12^2)под корнем
с=81 под корнем
с=9
ответ: второй катет равен 9см
Ну если периметр 34 и одна сторона 5, то другая (34 - 5 - 5)/2 = 12см.
Далее по теореме Пифагора находим диагональ. 12^2 + 5^2 = x^2, где x - Диагональ. решая уравнение, получаем, что х = 13см а - основание
а=8,
половина основания=4
в - боковая сторона
в=корень(4^2+3^2)=5
p=5+5+8=18 см
Если рассматривать диагональ квадрата как гипотенузу прямоугольного треугольника, то из теоремы Пифагора следует свойство: а^2+a^2=d^2
(примечание: sqrt-корень квадратный; а^2- "а" в квадрате; а-сторона; d-диагональ)
2a^2=sqrt8^2
2a^2=8
a^2=4
a=sqrt4
a=2см
задача5
Проведи высоты. Получится 2 равных прямоугольных треугольника с катетами, один из которых = высоте трапеции 4 см, а другой = 1/2 разности оснований трапеции: (6-3)/2 = 1,5 см => боковые стороны будут V(4^2 + 1,5^2) = V18,25 = 4,272...= 4,3 =>
Периметр будет 6+3+2*4,3 = 17,6 см
гипотенуза^2=первый катет^2+второй катет^2;катет=корень из разности гипотенузы и катета!
c=(15^2-12^2)под корнем
с=81 под корнем
с=9
ответ: второй катет равен 9см
Ну если периметр 34 и одна сторона 5, то другая (34 - 5 - 5)/2 = 12см.
Далее по теореме Пифагора находим диагональ. 12^2 + 5^2 = x^2, где x - Диагональ. решая уравнение, получаем, что х = 13см а - основание
а=8,
половина основания=4
в - боковая сторона
в=корень(4^2+3^2)=5
p=5+5+8=18 см
Если рассматривать диагональ квадрата как гипотенузу прямоугольного треугольника, то из теоремы Пифагора следует свойство: а^2+a^2=d^2
(примечание: sqrt-корень квадратный; а^2- "а" в квадрате; а-сторона; d-диагональ)
2a^2=sqrt8^2
2a^2=8
a^2=4
a=sqrt4
a=2см
задача5
Проведи высоты. Получится 2 равных прямоугольных треугольника с катетами, один из которых = высоте трапеции 4 см, а другой = 1/2 разности оснований трапеции: (6-3)/2 = 1,5 см => боковые стороны будут V(4^2 + 1,5^2) = V18,25 = 4,272...= 4,3 =>
Периметр будет 6+3+2*4,3 = 17,6 см
я так понял, что Вас интересует второй вариант. Вот его решение
Диагональным сечением, площадь которого надо найти, является равнобедренный треугольник, т.к. боковые ребра оказываются все равными между собой, что следует из равенства проекций этих ребер, которые являются половинами равных диагоналей прямоугольника, лежащего в основании.
Т.к. высота пирамиды - это и высота диагонального сечения, то, зная основание треугольника- это диагональ прямоугольника и по теореме Пифагора она равна √(6²+8²)=√(36+64)=√100=10(см), можно найти площадь диагонального сечения. Для этого основание треугольника 10 см умножим на высоту треугольника 8 см и результат поделим на 2
Получим (10*8)/2=40 (см²)
ответ 40 см²
рассуждая аналогично, можем решить и первый вариант.
Находим диагональ прямоугольника по теореме Пифагора
√(8²+15²)=√(64+225)=√289=17, тогда искомая площадь
(17*2)/2=17 (см²)